Quick Start Guide¶
This guide will help you get started with SheetWise in just a few minutes.
Basic Example¶
Here’s a simple example to compress and encode a spreadsheet:
import pandas as pd
from sheetwise import SpreadsheetLLM
# Initialize
sllm = SpreadsheetLLM()
# Load your spreadsheet
df = pd.read_excel("data.xlsx")
# Compress and encode
encoded = sllm.compress_and_encode_for_llm(df)
print(encoded)
Auto-Configuration¶
Let SheetWise automatically optimize compression settings:
from sheetwise import SpreadsheetLLM
sllm = SpreadsheetLLM()
df = pd.read_excel("data.xlsx")
# Auto-configure based on spreadsheet characteristics
auto_compressed = sllm.compress_with_auto_config(df)
Token Budget Control¶
Ensure your output fits within a token limit:
from sheetwise import SpreadsheetLLM
sllm = SpreadsheetLLM()
df = pd.read_excel("large_file.xlsx")
# Automatically adjust compression to fit 4000 tokens
encoded = sllm.encode_to_token_limit(df, max_tokens=4000)
Working with Formulas¶
Extract and analyze Excel formulas:
from sheetwise import FormulaParser
parser = FormulaParser()
formulas = parser.extract_formulas("workbook.xlsx")
# Build dependency graph
parser.build_dependency_graph()
# Get formula impact
impact = parser.get_formula_impact("Sheet1!A1")
print(impact)
Advanced Table Detection¶
Detect and classify tables in your spreadsheet:
from sheetwise import SmartTableDetector
detector = SmartTableDetector(header_detection=True)
tables = detector.detect_tables(df)
for table in tables:
print(f"Table type: {table.table_type}")
print(f"Has headers: {table.has_headers}")
print(f"Header rows: {table.header_rows}")
print(f"Header cols: {table.header_cols}")
Multi-Sheet Workbooks¶
Process entire workbooks:
from sheetwise import WorkbookManager, SpreadsheetLLM
workbook = WorkbookManager()
sheets = workbook.load_workbook("workbook.xlsx")
# Detect cross-sheet references
refs = workbook.detect_cross_sheet_references()
# Compress entire workbook
sllm = SpreadsheetLLM()
compressed = workbook.compress_workbook(sllm.compressor)
encoded = workbook.encode_workbook_for_llm(compressed)
Visualization¶
Generate visual reports:
from sheetwise import CompressionVisualizer, SpreadsheetLLM
sllm = SpreadsheetLLM()
visualizer = CompressionVisualizer()
df = pd.read_excel("data.xlsx")
compressed = sllm.compress_spreadsheet(df)
# Create heatmap
fig = visualizer.create_data_density_heatmap(df)
fig.savefig("heatmap.png")
# Generate HTML report
html = visualizer.generate_html_report(df, compressed)
with open("report.html", "w") as f:
f.write(html)
Command Line Interface¶
Use SheetWise from the command line:
# Basic usage
sheetwise input.xlsx -o output.txt
# With auto-configuration
sheetwise input.xlsx --auto-config --verbose
# Run demo
sheetwise --demo
# JSON output
sheetwise input.xlsx --format json
Next Steps¶
Learn about Compression Guide techniques
Explore the api/core reference
Check out Examples for more use cases