Quick Start Guide ================= This guide will help you get started with SheetWise in just a few minutes. Basic Example ------------- Here's a simple example to compress and encode a spreadsheet: .. code-block:: python import pandas as pd from sheetwise import SpreadsheetLLM # Initialize sllm = SpreadsheetLLM() # Load your spreadsheet df = pd.read_excel("data.xlsx") # Compress and encode encoded = sllm.compress_and_encode_for_llm(df) print(encoded) Auto-Configuration ------------------ Let SheetWise automatically optimize compression settings: .. code-block:: python from sheetwise import SpreadsheetLLM sllm = SpreadsheetLLM() df = pd.read_excel("data.xlsx") # Auto-configure based on spreadsheet characteristics auto_compressed = sllm.compress_with_auto_config(df) Token Budget Control -------------------- Ensure your output fits within a token limit: .. code-block:: python from sheetwise import SpreadsheetLLM sllm = SpreadsheetLLM() df = pd.read_excel("large_file.xlsx") # Automatically adjust compression to fit 4000 tokens encoded = sllm.encode_to_token_limit(df, max_tokens=4000) Working with Formulas --------------------- Extract and analyze Excel formulas: .. code-block:: python from sheetwise import FormulaParser parser = FormulaParser() formulas = parser.extract_formulas("workbook.xlsx") # Build dependency graph parser.build_dependency_graph() # Get formula impact impact = parser.get_formula_impact("Sheet1!A1") print(impact) Advanced Table Detection ------------------------ Detect and classify tables in your spreadsheet: .. code-block:: python from sheetwise import SmartTableDetector detector = SmartTableDetector(header_detection=True) tables = detector.detect_tables(df) for table in tables: print(f"Table type: {table.table_type}") print(f"Has headers: {table.has_headers}") print(f"Header rows: {table.header_rows}") print(f"Header cols: {table.header_cols}") Multi-Sheet Workbooks --------------------- Process entire workbooks: .. code-block:: python from sheetwise import WorkbookManager, SpreadsheetLLM workbook = WorkbookManager() sheets = workbook.load_workbook("workbook.xlsx") # Detect cross-sheet references refs = workbook.detect_cross_sheet_references() # Compress entire workbook sllm = SpreadsheetLLM() compressed = workbook.compress_workbook(sllm.compressor) encoded = workbook.encode_workbook_for_llm(compressed) Visualization ------------- Generate visual reports: .. code-block:: python from sheetwise import CompressionVisualizer, SpreadsheetLLM sllm = SpreadsheetLLM() visualizer = CompressionVisualizer() df = pd.read_excel("data.xlsx") compressed = sllm.compress_spreadsheet(df) # Create heatmap fig = visualizer.create_data_density_heatmap(df) fig.savefig("heatmap.png") # Generate HTML report html = visualizer.generate_html_report(df, compressed) with open("report.html", "w") as f: f.write(html) Command Line Interface ---------------------- Use SheetWise from the command line: .. code-block:: bash # Basic usage sheetwise input.xlsx -o output.txt # With auto-configuration sheetwise input.xlsx --auto-config --verbose # Run demo sheetwise --demo # JSON output sheetwise input.xlsx --format json Next Steps ---------- * Learn about :doc:`user_guide/compression` techniques * Explore the :doc:`api/core` reference * Check out :doc:`examples` for more use cases